Search results for "tumor lines"

showing 1 items of 1 documents

Endocytotic uptake of HPMA-based polymers by different cancer cells: impact of extracellular acidosis and hypoxia.

2017

Daniel Gündel,1 Mareli Allmeroth,2 Sarah Reime,1 Rudolf Zentel,2 Oliver Thews1 1Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), 2Institute of Organic Chemistry, Johannes Gutenberg-University, Mainz, Germany Background: Polymeric nanoparticles allow to selectively transport chemotherapeutic drugs to the tumor tissue. These nanocarriers have to be taken up into the cells to release the drug. In addition, tumors often show pathological metabolic characteristics (hypoxia and acidosis) which might affect the polymer endocytosis.Materials and methods: Six different N-(2-hydroxypropyl)methacrylamide (HPMA)-based polymer structures (homopolymer as well as…

Materials sciencePolymersBiophysicsHPMA–LMA copolymersPharmaceutical ScienceBioengineering02 engineering and technologyEndocytosisMethacrylatestructure–property relationshipBiomaterials03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDrug Delivery SystemsInternational Journal of NanomedicineCell Line TumorDrug Discoverytumor linesMethacrylamideAnimalstumor microenvironmentOriginal ResearchAcrylamidesTumor hypoxiaPinocytosisOrganic ChemistryGeneral MedicineHydrogen-Ion Concentration021001 nanoscience & nanotechnologyEndocytosisRatsMolecular WeightBiochemistrychemistry030220 oncology & carcinogenesisDrug deliveryCancer cellMethacrylatesNanoparticlesTumor HypoxiaNanocarriers0210 nano-technologyAcidosisHydrophobic and Hydrophilic InteractionsInternational journal of nanomedicine
researchProduct